Using Generative Adversarial Network to Generate Synthetic Population

Yijun Wei¹
Luca Sartore¹
Nell Sedransk¹

Disclaimer

The findings and conclusions in this presentation are those of the authors and should not be construed to represent any official USDA, or U.S. Government determination or policy

Outline

- Background Census of Agriculture
- Goal of the research
- Approach: Generative Adversarial Network (GAN)
- Experiment and result
- Conclusion and future work

Census of Agriculture

Every five years, USDA's National Agricultural Statistics Service (NASS) conducts the U.S. Census of Agriculture

- The Census provides a detailed picture of U.S. farms, ranches and the people who operate them
- It is the only source of uniform, comprehensive agricultural data for every state and county in the United States
- NASS makes Census data publicly available only as summary statistics
- Record-level information should be provided and disclosure of the confidential information should be averted

Goal of the research

- Problem: To provide detailed information based on the Census data
- Constraint: To avoid the disclosure of the confidential information
- Solution: A modified or synthetic dataset that preserves the internal relationship of the original dataset
- Previous approaches (Rubin, 1993; Reiter, 2005a,b,c; Paiva et al., 2014; Drechsler and Reiter, 2009):
 - Synthetic data distributions generated from models
 - Pooled or near-neighbors, used as exchangeable observations
 - Inter-changes of data elements among units
- The trade-off for synthetic data is disclosure protection vs preservation of data complexity

Motivation of Generative Adversarial Network (GAN)

Idea:

- To preserve finer internal structures
- To duplicate statistical properties with the original dataset

Approach:

- To use deep learning networks to synthesize
- To revise until synthetic data cannot be distinguished from the original data

Solution: Pair of networks

- Generative network (G-network) creates record-level synthetic data
- Discriminative network (D-network) distinguishes real data from the synthetic

Generative Adversarial Network (GAN)

GAN (Goodfellow et al., 2014) consists of two neural networks that train simultaneously and "compete" with each other

- G-network takes in random numbers and returns record-level synthetic data
- The generated synthetic data concatenated with the real data are fed into the D-network
- A D-network learns to distinguish real data from synthetic data
- Parameters of G-network are updated to "fool" the discriminator

Iterate

 Process stops when the G-network's output (synthetic data) can't be distinguished by D-network from the real population

Two utility measures

Two utility measures are used adapted from Woo et al. (2009) Propensity score

- Assume: Original population and synthetic population have the same size
- Original records labeled 0, synthetic records labeled 1
- Propensity score for each record is generated by a model with response either 0 or 1

$$U_p = 1 - \frac{1}{N} \sum_{i=1}^{N} (\widehat{p}_i - c)^2$$

 U_p : Propensity utility score

N: Total number of records

 \widehat{p}_i : Estimated propensity score for unit i

c: 0.5

Completely indistinguishable when $U_p \rightarrow 1$, otherwise $\rightarrow 0.75$

Two utility measures - continued

Clustering Score Measure

- Assume: Original population and synthetic population have the same size
- All the clusters are equally important

$$U_c = 1 - \frac{1}{G} \sum_{i=1}^{G} w_i (\frac{n_{io}}{n_i} - c)^2$$

 U_c : Clustering utility score

G: Total number of clusters

 n_i :Number of observations in the *i-th* cluster

 n_{io} : Number of original observations in the *i-th* cluster

 w_i : 1

c: 0.5

• Completely indistinguishable when $U_c \rightarrow 1$, otherwise $\rightarrow 0.75$

Evaluation of identification disclosure risk

Disclosure risk measure using neighborhood-based approach adapted from Hu and Savitsky (2019)

$$S_r = \frac{1}{N} \sum_{i=1}^{N} I_i$$

 S_r : Risk score

N: Total number of records

 I_i : 1 if the *i-th* synthetic record lies in the 10-neighbors of the *i-th* original record, otherwise 0

• Completely distinguishable when $S_r \to 0$, otherwise \to 1

Pilot experiment

- A subset of 2012 Census of Agriculture dataset
 - One million records
 - No missing values
 - A subset of items selected
 - Total Land in Farms
 - Total Value Production
 - State (State id)
 - County (County id)
- Rescale to -1 and 1

Pilot experiment - continued

- A GAN is trained on the subset of one million records dataset considering the loss function
 - In G-network
 - The cross entropy to penalize the output from G-network classified as synthetic by D-network
 - First, and second moments of the original distribution added to the loss function
 - In D-network
 - The cross entropy to penalize wrongly assigning the output from Gnetwork to real, and real to synthetic
- Utility measures are calculated to evaluate the synthetic population
- Evaluation of identification disclosure risk measure is calculated

Result

Result - continued

Propensity Score Measure: $U_p = 0.97 \rightarrow 1$

Clustering Score Measure:

•
$$G = 200$$
, $U_C = 0.92 \rightarrow 1$

Risk Score Measure: $S_r = 0.02 \rightarrow 0$

Conclusion

- GAN worked well for generating synthetic population for two continuous Census of Agriculture variables in terms of
 - Propensity score measure
 - Clustering score measure
- GAN failed to capture extreme values
- Identification disclosure risk of synthetic population is low

Future work

- Comprehensive experimentation
 - Multiple variables
 - Different numbers of clusters
 - Categorical, count, and skewed variables
- Further tuning of GAN's hyper-parameters
- Other measures of utility and of identification disclosure risks
- Adaptation to better fit distribution extremes

Selected references

- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
 Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets.
 In Advances in neural information processing systems (pp. 2672-2680).
- Hu, J., & Savitsky, T. D. (2018). Bayesian data synthesis and disclosure risk quantification: An application to the Consumer Expenditure Surveys. *arXiv* preprint arXiv:1809.10074.
- Paiva, T., Chakraborty, A., Reiter, J. P., and Gelfand, A. E. (2014). Imputation of confidential data sets with spatial locations using disease mapping models. Statistics in Medicine 33, 1928–1945.
- Reiter, J. P. (2005a). Estimating risks of identification disclosure in microdata. Journal of the American Statistical Association 100, 1103– 1112.
- Reiter, J. P. (2005b). Releasing multiply-imputed, synthetic public use microdata: An illustration and empirical study. Journal of the Royal Statistical Society, Series A 168, 185–205.

Selected references

- Reiter, J. P. (2005c). Using cart to generate partially synthetic public use microdata. Journal of Official Statistics 21, 441–462.
- Rubin, D. B. (1993). Discussion statistical disclosure limitation. Journal of Official Statistics 9, 461–468
- Truta, T. M., Fotouhi, F., & Barth-Jones, D. (2003, July). Disclosure risk measures for microdata. In 15th International Conference on Scientific and Statistical Database Management, 2003. (pp. 15-22). IEEE.
- Woo, M. J., Reiter, J. P., Oganian, A., & Karr, A. F. (2009). Global measures of data utility for microdata masked for disclosure limitation. *Journal of Privacy and Confidentiality*, 1(1).
- Drechsler, J. and Reiter, J. P. (2009), Disclosure risk and data utility for partially synthetic data: An empirical study using the German IAB Establishment Survey, Journal of Official Statistics, 25, 589 603.

Questions?

ywei@niss.org

